Source:- Google.com.pk
Welcome to PakEarn.com (Facebook Photo Posting Jobs)
Science (from Latin scientia, meaning "knowledge") is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe. In an older and closely related meaning, "science" also refers to a body of knowledge itself, of the type that can be rationally explained and reliably applied. A practitioner of science is known as a scientist.
Since classical antiquity, science as a type of knowledge has been closely linked to philosophy. In the early modern period the words "science" and "philosophy of nature" were sometimes used interchangeably. By the 17th century, natural philosophy (which is today called "natural science") was considered a separate branch of philosophy.
In modern usage, "science" most often refers to a way of pursuing knowledge, not only the knowledge itself. It is also often restricted to those branches of study that seek to explain the phenomena of the material universe. In the 17th and 18th centuries scientists increasingly sought to formulate knowledge in terms of laws of nature such as Newton's laws of motion. And over the course of the 19th century, the word "science" became increasingly associated with the scientific method itself, as a disciplined way to study the natural world, including physics, chemistry, geology and biology. It is in the 19th century also that the term scientist was created by the naturalist-theologian William Whewell to distinguish those who sought knowledge on nature from those who sought other types of knowledge.
However, "science" has also continued to be used in a broad sense to denote reliable and teachable knowledge about a topic, as reflected in modern terms like library science or computer science. This is also reflected in the names of some areas of academic study such as "social science" or "political science".
Science in a broad sense existed before the modern era, and in many historical civilizations, but modern science is so distinct in its approach and successful in its results that it now defines what science is in the strictest sense of the term.[10] Much earlier than the modern era, another important turning point was the development of classical natural philosophy in the ancient Greek-speaking world.
Science in its original sense is a word for a type of knowledge (Latin scientia, Ancient Greek epistemē), rather than a specialized word for the pursuit of such knowledge. In particular it is one of the types of knowledge which people can communicate to each other and share. For example, knowledge about the working of natural things was gathered long before recorded history and led to the development of complex abstract thinking, as shown by the construction of complex calendars, techniques for making poisonous plants edible, and buildings such as the pyramids. However no consistent conscientious distinction was made between knowledge of such things which are true in every community, and other types of communal knowledge such as mythologies and legal systems.
Before the invention or discovery of the concept of "nature" (Ancient Greek phusis), by the Pre-Socratic philosophers, the same words tend to be used to describe the natural "way" in which a plant grows,[11] and the "way" in which, for example, one tribe worships a particular god. For this reason it is claimed these men were the first philosophers in the strict sense, and also the first people to clearly distinguish "nature" and "convention". Science was therefore distinguished as the knowledge of nature, and the things which are true for every community, and the name of the specialized pursuit of such knowledge was philosophy — the realm of the first philosopher-physicists. They were mainly speculators or theorists, particularly interested in astronomy. In contrast, trying to use knowledge of nature to imitate nature (artifice or technology, Greek technē) was seen by classical scientists as a more appropriate interest for lower class artisans
A major turning point in the history of early philosophical science was the controversial but successful attempt by Socrates to apply philosophy to the study of human things, including human nature, the nature of political communities, and human knowledge itself. He criticized the older type of study of physics as too purely speculative, and lacking in self-criticism. He was particularly concerned that some of the early physicists treated nature as if it could be assumed that it had no intelligent order, explaining things merely in terms of motion and matter.
The study of human things had been the realm of mythology and tradition, and Socrates was executed. Aristotle later created a less controversial systematic programme of Socratic philosophy, which was teleological, and human-centred. He rejected many of the conclusions of earlier scientists. For example in his physics the sun goes around the earth, and many things have it as part of their nature that they are for humans. Each thing has a formal cause and final cause and a role in the rational cosmic order. Motion and change is described as the actualization of potentials already in things, according to what types of things they are. While the Socratics insisted that philosophy should be used to consider the practical question of the best way to live for a human being (a study Aristotle divided into ethics and political philosophy), they did not argue for any other types of applied science.
Aristotle maintained the sharp distinction between science and the practical knowledge of artisans, treating theoretical speculation as the highest type of human activity, practical thinking about good living as something less lofty, and the knowledge of artisans as something only suitable for the lower classes. In contrast to modern science, Aristotle's influential emphasis was upon the "theoretical" steps of deducing universal rules from raw data, and did not treat the gathering of experience and raw data as part of science itself
During late antiquity and the early Middle Ages, the Aristotelian approach to inquiries on natural phenomenon was used. Some ancient knowledge was lost, or in some cases kept in obscurity, during the fall of the Roman Empire and periodic political struggles. However, the general fields of science, or natural philosophy as it was called, and much of the general knowledge from the ancient world remained preserved though the works of the early Latin encyclopedists like Isidore of Seville. Also, in the Byzantine empire, many Greek science texts were preserved in Syriac translations done by groups such as Nestorians and Monophysites. Many of these were translated later on into Arabic under Islamic rule, during which many types of classical learning were preserved and in some cases improved upon. In the later medieval period, as science in Byzantium and the Islamic world waned, Western Europeans began collecting ancient texts from the Mediterranean, not only in Latin, but also in Greek, Arabic, and Hebrew. Knowledge of ancient researchers such as Aristotle, Ptolemy, Euclid, amongst Catholic scholars, were recovered with renewed interest in diverse aspects of natural phenomenon. In Europe, men like Roger Bacon in England argued for more experimental science. By the late Middle Ages, a synthesis of Catholicism and Aristotelianism known as Scholasticism was flourishing in Western Europe, which had become a new geographic center of science.
By the late Middle Ages, especially in Italy there was an influx of Greek texts and scholars from the collapsing Byzantine empire. Copernicus formulated a heliocentric model of the solar system unlike the geocentric model of Ptolemy's Almagest. All aspects of scholasticism were criticized in the 15th and 16th centuries; one author who was notoriously persecuted was Galileo, who made innovative use of experiment and mathematics. However the persecution began after Pope Urban VIII blessed Galileo to write about the Copernican system. Galileo had used arguments from the Pope and put them in the voice of the simpleton in the work "Dialogue Concerning the Two Chief World Systems" which caused great offense to him.
In Northern Europe, the new technology of the printing press was widely used to publish many arguments including some that disagreed with church dogma. René Descartes and Francis Bacon published philosophical arguments in favor of a new type of non-Aristotelian science. Descartes argued that mathematics could be used in order to study nature, as Galileo had done, and Bacon emphasized the importance of experiment over contemplation. Bacon questioned the Aristotelian concepts of formal cause and final cause, and promoted the idea that science should study the laws of "simple" natures, such as heat, rather than assuming that there is any specific nature, or "formal cause", of each complex type of thing. This new modern science began to see itself as describing "laws of nature". This updated approach to studies in nature was seen as mechanistic. Bacon also argued that science should aim for the first time at practical inventions for the improvement of all human life.
In the 17th and 18th centuries, the project of modernity, as had been promoted by Bacon and Descartes, led to rapid scientific advance and the successful development of a new type of natural science, mathematical, methodically experimental, and deliberately innovative. Newton and Leibniz succeeded in developing a new physics, now referred to as Newtonian physics, which could be confirmed by experiment and explained using mathematics. Leibniz also incorporated terms from Aristotelian physics, but now being used in a new non-teleological way, for example "energy" and "potential" (modern versions of Aristotelian "energeia and potentia"). In the style of Bacon, he assumed that different types of things all work according to the same general laws of nature, with no special formal or final causes for each type of thing.
It is during this period that the word "science" gradually became more commonly used to refer to a type of pursuit of a type of knowledge, especially knowledge of nature — coming close in meaning to the old term "natural philosophy".
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
Science For Kids Jokes for Kids That are Really Funny in English In Hindi To Tell In Urdu Knock Knock Tagalog
No comments:
Post a Comment